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Abstract. We have reproduced magneto-volume effects typical for Invar alloys by examining a spin-
analogous model which describes coupled spatial and magnetic degrees of freedom and, additionally, chem-
ical disorder. Constant pressure Monte Carlo simulations of this model show an almost vanishing thermal
expansion over a broad range of temperatures below TC, a softening of the bulk modulus and the absence
of a sharp peak in the specific heat at the magnetic phase transition as observed in Fe65Ni35 Invar.

PACS. 75.50.Bb Fe and its alloys – 75.80.+q Magnetomechanical and magnetoelectric effects,
magnetostriction – 75.40.Cx Static properties (order parameter, static susceptibility,
heat capacities, critical exponents, etc.)

1 Introduction

Since the discovery at the turn of the century that
Fe65Ni35 exhibits an almost vanishing thermal expansion
at room temperature [1], many experimental and theo-
retical investigations (for recent reviews on this topic see
[2–4]) have taken place in order to explore anomalously
low or high thermal expansion in various materials, gen-
erally called Invar or anti-Invar effect, respectively. Es-
pecially ab initio band structure calculations, which can
determine the dependence of the internal energy on the
mean magnetic moment and the lattice constant, play an
important role in finding an explanation for this behav-
ior (e.g. [4–6]). Recent calculations concerning Fe65Ni35

[6] using the KKR-CPA formalism revealed that the bind-
ing surface, which shows the energy as a function of the
mean magnetic moment and the lattice constant, has two
distinct, nearly degenerate minima: One at a lattice con-
stant of 6.62 a.u. and a magnetic moment per atom of
1.6µB and another at a lattice constant of 6.48 a.u. and
an almost vanishing magnetic moment. For the sake of
simplicity we will call these minima high-moment state
(HM) and low-moment state (LM), respectively. This re-
sult gives some late justification for the phenomenological
two-γ-states model proposed by Weiss [7], which describes
the properties of iron in a face-centered cubic environment
by assuming two electronic states of the iron atom with
different magnetic moments and different volumes.

Generally, those ab initio energy surfaces are calcu-
lated for zero temperature only, because extrapolating the
results to finite temperatures faces severe methodologi-
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cal and technical problems. This hampers the comparison
with experimental results, since most of the astonishing
features of Invar alloys are observed at finite tempera-
tures. So far, to the authors’ knowledge, only continuous
Ginzburg-Landau like spin models, which have been ex-
tended to finite temperatures by using a Gaussian fluctu-
ation theory for magnetic and lattice degrees of freedom
[8–12] have been used to fill this gap. Given the assump-
tion that the HM-LM characteristic is the most important
feature of the energy surface of Invar alloys, one may also
investigate a Weiss type model, adapted to incorporate
the results given by T = 0 ab initio calculations. For this
purpose we used an approach previously taken by Taka-
hashi [13,14], who proposed an Ising like spin model with
coupled magnetic and spatial degrees of freedom for the
description of low-moment – high-moment transitions oc-
curring in some transition metal complexes. We modified
this model to meet the situation in Invar alloys and em-
ployed the constant pressure Monte Carlo method, which
allows us to calculate the temperature dependence of im-
portant properties as thermal expansion coefficient, adi-
abatic bulk modulus or specific heat and compare them
with experimental data.

The use of a variation of the Weiss model and the ne-
glect of the itinerant character of the 3d electrons in this
paper needs further justification. To this we briefly discuss
the magnetic binding surface of elemental fcc iron, since
the origin of magnetovolume instabilities of the Invar-
type in the Fe-Ni alloys and of the anti-Invar-type in the
Fe-Mn alloys is related to the properties of γ-iron.
Figure 1 shows the energy surface of γ-Fe with con-
tour lines at 1 mRy/atom intervals in the moment
versus volume (Wigner-Seitz radius) plane as obtained
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Fig. 1. Energy surface of γ-Fe for ferromagnetic (FM) and an-
tiferromagnetic (AF) spin orientations estimated from ab initio
calculations [15]. Contour lines are at ∆E = 1 mRy intervals.

by an extrapolation of a zero-temperature full-potential
calculation (semi-relativistic calculation using the full
potential linearized augmented plane wave method,
FLAPW, and the generalized gradient approximation,
GGA, [15]). The surface exhibits three distinct local min-
ima, a LM state (with M ≈ 1µB at rws ≈ 2.6 a.u.), a HM
state (with M ≈ 2.5µB at rws ≈ 2.7 a.u.), and an antifer-
romagnetic LM state (with M ≈ 1.3µB at rws ≈ 2.6 a.u.),
and in addition contains a nonmagnetic saddle point at
rws ≈ 2.56 a.u.. The antiferromagnetic LM state is lowest
in energy in accordance with experiment (for growth of
γ-iron on a substrate with appropriate lattice constant)
and only at very expanded volume a crossover to a ferro-
magnetic HM state occurs in agreement with the behavior
of the inter-atomic exchange coupling constant [16]. This
antiferromagnetic exchange interactions between the iron
atoms survives in the Fe-Ni alloys and only the strong fer-
romagnetic exchange interaction between the Fe-Ni and
Ni-Ni atoms stabilizes the ferromagnetic HM state in the
Invar alloys. Disorder effects in Fe-Ni further stabilize the
antiferromagnetic nature of the Fe moments as shown by
recent supercell calculations [6]. Therefore, we will use
these basic exchange interactions as an ingredient of our
Hamiltonian and neglect its volume dependence, because
the driving force for the LM 
 HM transitions in the

Invar-alloys is triggered by the depopulation of HM states
with decreasing volume or increasing temperature. Our
Monte Carlo simulations show that an additional renor-
malization is not necessary in order to explain major prop-
erties of Fe-Ni alloys. If at low temperatures parameters
of our model Hamiltonian are fixed so that properties of
the binding surfaces and curves of γ-Fe and γ-Fe-Ni al-
loys are in quantitative agreement with ab initio results
at zero temperature, then it can be expected that most of
the important aspects of the solid state have been taken
into account and that Monte Carlo simulations of spin and
lattice fluctuations will give reasonable results.

In this context one should mention that an alterna-
tive description based on a compressible Ising model has
recently been proposed [17,18]. In the latter work also
the importance of the antiferromagnetism of the magne-
tovolume active Fe-Fe bonds has been outlined. However,
thermodynamic properties like thermal expansion, bulk
modulus or specific heat have not been evaluated by the
authors, so that a comparison with our results is not pos-
sible.

As in any itinerant magnetic system, the energetic
splitting between the HM and LM state on the binding
surface is connected with the gain in exchange energy with
respect to kinetic and electrostatic energy changes. The
volume dependence of such terms or of Ligand field-like
terms certainly plays a role.

However, the treatment of these effects in the pres-
ence of magnetovolume instabilities with ab initio meth-
ods at finite temperatures is so far an unsolved problem
[19]. Therefore, in previous work of finite temperature ef-
fects in Invar and anti-Invar alloys, effective Ginzburg-
Landau Hamiltonians have been used [8–12], which do not
restrict the system to two magnetic states. Shortcoming
of this procedure is connected with an overestimation of
fluctuation effects and the appearance of first-order phase
transitions due to the Gaussian ansatz for the fluctuating
fields.

In the present work the procedure is similar, we for-
mulate a spin Hamiltonian with lattice degrees of free-
dom, whereby parameters are fixed by comparison to
ab initio results. However, this finite temperature treat-
ment is much better, since the Monte Carlo method al-
lows to solve the Hamiltonian at any temperature without
any further approximations. So partial aim of this work is
connected with comparing our finite temperature results
with previous results of a Gaussian fluctuation theory, a
mode-mode coupling theory for spin and volume degrees
of freedom, and with predictions for finite temperatures
which can be made on the basis of first principles results
for Invar alloys. A critical report of this will be given in
the conclusions.

After giving a concise description of the model and
the simulation method used, we will present in detail our
results and relate them to previous theoretical and exper-
imental investigations of Invar alloys. We will start with
the discussion of the properties of a simple HM-LM model
that is restricted to atoms of only one type. Afterwards
we will deal with the properties of an extended model
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which can handle chemically disordered binary alloys.
Our simulations on this matter were designed to repro-
duce important properties of Fe-Ni alloys. Finally we will
examine the behavior of our model alloy at finite pressure.

2 The model

The crucial point in the construction of a model for HM -
LM transitions is the consideration of different spin states
at each site i of the lattice. Takahashi [13,14] assumed
two classical spins σ1

i , σ
2
i = ±1 at each site, coupled by

an interaction constant j. Different sites interact with each
other via the sum Si = (σ1

i + σ2
i )/2 of the local spins with

an interaction constant J . If the two local spins σi on a site
are antiparallel to each other (LM state), Si vanishes and
the site does not interact magnetically with its neighbors.
Sites with parallel aligned σ’s (HM state) show a nor-
mal interaction of the Ising type. In order to incorporate
magnetovolume coupling, we introduce a pair interaction
between the sites which depends on their distance rik and
spin states. The total Hamiltonian which can be split into
a magnetic part Hm and a vibrational part Hv is then

H = −j
∑
i

σ1
i σ

2
i − J

∑
<i,k>

SiSk︸ ︷︷ ︸
Hm

+
∑
<i,k>

U(rik, Si, Sk)︸ ︷︷ ︸
Hv

. (1)

The brackets indicate a summation over nearest neigh-
bors. In contrast to [13,14], where harmonic potentials
were used, we have adopted a Lennard-Jones type of in-
teraction since this form exhibits thermal expansion:

U(rik, Si, Sk) =


4εL

((
dL
rik

)12

−
(
dL
rik

)6
)
, SiSk = 0

4εH

((
dH
rik

)12

−
(
dH
rik

)6
)
, SiSk 6= 0

,

(2)

where εL,H denotes the energy at the equlibrium neigh-

bor distance rik = 21/6dL,H for LM and HM potentials,
respectively.

Due to the relation σ1
i σ

2
i = 2S2

i − 1, the magnetic
contributions Hm can be written as a spin-1 Ising Hamil-
tonian

H̃m = −j̃
∑
i

S2
i − J

∑
<i,k>

SiSk . (3)

Hamiltonian (3) is also known as Blume-Capel model
[20,21] which was originally used for the description of
magnetic first order phase transitions in UO2. However,
in our case one has to take care of the twofold degeneracy
of the LM state Si = 0. So one must make sure that each
occurrence of Si = 0 is counted twice in the computation
of thermodynamical averages: For each spin configuration
the Boltzmann factor in the sum over states has to be
weighted by a factor 2−n with n =

∑
i S

2
i which can be

accounted for by a temperature dependent anisotropy con-
stant j̃ (e.g. [22])

βj̃ = 2βj + ln g . (4)

Here, g describes the statistical weight of the LM state
compared to the HM state, which determines the fraction
of nonmagnetic sites in the limit of infinite temperature. In
order to achieve accordance to Hamiltonian (1) one must
use g = 2, but in principle any other level of degeneracy
can be accounted for.

For the description of binary alloys, e.g. Fe-Ni, we have
to choose the exchange constants Jik dependent on the
kinds of atoms involved. Further the difference in energy
between the HM-state and the LM-state as given by ji
may vary, too. This leads to the Hamiltonian

H = −2
∑
i

ji S
2
i −

∑
<i,k>

Jik SiSk +
∑
<i,k>

Uik(rik, Si, Sk) ,

(5)

where ji ∈ {jFe, jNi} and Jik ∈ {JFeFe, JFeNi, JNiNi}. For
the sake of simplicity the Uik do not depend on the type
of the interacting atoms.

3 Simulation method and calculated
quantities

Using the Hamiltonians (1,5) we have done Monte Carlo
simulations on a fcc lattice with N = 63 × 4 = 864 sites
and N = 123 × 4 = 6912 sites, respectively, using periodic
boundary conditions. On a IBM workstation model 590
we reached a performance of up to 30 000 site updates per
second. 80 000−100 000 lattice sweeps were performed for
each temperature, starting with the final configuration of
the previous temperature. The first 30 000 sweeps were
used to allow the system to reach equilibrium. To ensure
this, each run was carried out twice, the first one calcu-
lated while heating up the system, the second one upon
cooling down. After every tenth sweep, data were gathered
for thermal averaging.

One site update consists of two Monte Carlo steps.
First a new spin state is chosen using the usual Metropo-
lis algorithm. In order to include the vibrational degrees of
freedom, a new trial position is chosen afterwards from a
cubic region around the actual position. Again this state
is immediately accepted if it is more favorable with re-
spect to its energy than the former one or with probability
exp(−β∆H), otherwise. In order to improve convergence,
the size of the cube is determined by the condition that
about half of these propositions are to be accepted. Ad-
ditionally, after each lattice sweep we introduced another
Monte Carlo step which adjusts the volume of the whole
system by varying a scaling parameter that is used as a
factor for each neighbor distance. As in the former cases a
new value is accepted if it fulfills the Metropolis condition
mentioned above except that now the quantity

∆H = ∆H −N kBT ln (V ′/V ) (6)
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Fig. 2. Magnetization as a function of temperature in a
monatomic system for different values of j (J = 0.229 mRy,
dL = 2.182 Å, dH = 2.227 Å, and εL = εH = 2.09 mRy).

must be considered, where V ′ and V denote the new and
the old volume of the simulation cell, respectively. The
supplementary logarithmic term takes into account the
difference in translational entropy caused by the change
of the volume. For a more detailed description of constant
pressure Monte Carlo methods see e.g. [23].

The restriction of making a volume adjustment only
once per lattice sweep may lead for larger systems to a
separation of the time scales of spin flip dynamics and
lattice vibrations on the one side and volume adaption
on the other side. However, this seems not to be too far-
fetched for a realistic description of the elastic behavior of
metals. Practically we observed that the equilibrium vol-
ume is reached after a few hundred lattice sweeps even if
the simulation has started with a volume several percent
apart from its equlibrium value. To ensure this, we com-
pared the results for specific heat and thermal expansion
coefficient, which can be calculated in two different ways:
By numerically differentiating the mean values of energy
and volume, and from the fluctuations of these two ob-
servables (see below). In our simulations, no significant
differences were encountered. Therefore we suppose that
relaxation time effects can be discarded.

In our calculations we considered the average magnetic
moment, the absolute magnetization and the relative vol-
ume change

〈
S2
〉

=

〈
1

N

∑
i

S2
i

〉
(7)

〈|S|〉 =

〈
1

N

∣∣∣∣∣∑
i

Si

∣∣∣∣∣
〉

(8)

ω =
〈V 〉 − V0

V0
, (9)

where V0 designates the ground state volume of the sim-
ulation cell. Computing the magnetization of a binary al-
loy the different magnetic moments µi of the components
must be regarded:

〈|M |〉 =

〈
1

N

∣∣∣∣∣∑
i

µiSi

∣∣∣∣∣
〉
, (10)

with µi ∈ {µFe = 2.8µB, µNi = 0.6µB} in the case of Fe-Ni
alloys.

Furthermore we calculated the specific heat at con-
stant pressure cp, the linear thermal expansion coefficient
α and the isothermal bulk modulus BT [23]:

cp =
1

N kB T 2

(〈
(H + pV )

2
〉
− 〈H + p V 〉2

)
(11)

α =
〈V (H + p V )〉 − 〈V 〉 〈H + p V 〉

3 kB T 2 〈V 〉
(12)

BT = kB T
〈V 〉

〈V 2〉 − 〈V 〉2
· (13)

The experimentally accessible adiabatic bulk modulus BS

can be obtained from (11-13) using the thermodynamical
relations

BT

BS
=
cv

cp
and cp − cv = 9α2 T

〈V 〉

N
BT . (14)

4 Simulations of monatomic systems

In a first step we examined the influence of the vibrational
part Hv of the Hamiltonian (1). Therefore, we considered
a homogenous system with atoms of one type only.

4.1 Fixing of the parameters

Since the ferromagnetic Invar effect has not been observed
in pure metals but only in alloys, we did not adapt the pa-
rameters of our model to represent a particular material.
The parameters have been chosen so that values for bulk
modulus, thermal expansion coefficient and lattice con-
stant typical for iron alloys as well as reasonable magnetic
transition temperatures for disordered Fe-Pt alloys were
obtained: J = 0.23 mRy, dL = 2.182 Å, dH = 2.227 Å, and
εL = εH = 2.09 mRy. We set εL = εH so that the dif-
ference in energy between pure HM and LM states were
determined by the magnetic parameters j and J , only. The
parameter j has been varied from j = 0 to j = 2.29 mRy.
This choice of parameters induces a ferromagnetic HM
ground state as is observed in real Invar materials.

4.2 Results

The magnetization per atom, Figure 2, shows continuous
transitions as well as first order transitions from the fer-
romagnetic ground state to a paramagnetic high tempera-
ture state depending on the choice of j: Favoring the HM
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Fig. 3.
〈
S2
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as a function of temperature in a monatomic
system. Same symbols and parameters as in Figure 2.

state by employing a large positive j leads to a continu-
ous transition; in the limiting case j →∞ the LM state is
not accessible and the system behaves like a spin-1

2 Ising
model without any magnetovolume coupling. Lowering j
causes a reduction of the transition temperature and a
change of the critical behavior: The transition becomes
first order and exhibits a considerable hysteresis. Respec-
tively, the concentration of HM-Atoms

〈
S2
〉

shows an in-
creasing dilution of magnetic sites at a given temperature
with decreasing j (see Fig. 3). Also, at low j, an abrupt
jump from a ferromagnetic HM state into a paramagnetic
regime dominated by LM sites can be observed. Further
lowering of j leads to a nonmagnetic ground state.

As expected, thermal agitation of LM sites results in
a corresponding contraction of the simulation cell, as can
be seen from Figure 4. Again, the change of the simula-
tion volume at small j is discontinuous. At j = 2.29 mRy
we find a more or less vanishing thermal expansion which
would be typical for the Invar alloy Fe65Ni35 [2]. However,
the minimal thermal expansion coefficient α is reached for
a temperature considerably higher than TC (see Fig. 5)
which is in contradiction to experimental data. Lowering j
leads to a coincidence of magnetic transition and minimal
thermal expansion. At j = 1.38 mRy, where the energy
associated with magnetic ordering and the difference in
energy between HM and LM states are of about the same
size, we find a sharp dip in α, which resembles with a
minimal value of αmin ≈ −5×10−5 K−1 the experimental
findings in disordered Fe72Pt28 (αmin = −4.7×10−5 K−1,
[24]). Please note that we cannot reproduce Grüneisen be-
havior, since we are dealing with a classical description of
the elastic degrees of freedom. Hence we will find a positive
α even at T = 0.

Also, the adiabatic bulk modulus (Fig. 6) exhibits the
expected weakening of the material which is in qualita-

0 200 400 600 800
T (K)

-0.04

-0.02

0.00

0.02

ω

 j = 0
 j = 0.46 mRy
 j = 0.92 mRy
 j = 1.38 mRy
 j = 2.29 mRy

Fig. 4. Relative volume change as a function of temperature
in a monatomic system. Same parameters as in Figure 2.

tive agreement with the behavior of real Fe72Pt28. The
experimental data in Figure 6 are gained from ultrasonic
measurements of the elastic constants CL, C′ and C44 [25]
via the relation

BS = CL −
1

3
C′ − C44 . (15)

4.3 Discussion

The occurrence of a first order transition for j = 0 is
caused by the vibrational part Hv of the Hamiltonian (1),
since investigations concerning the magnetic contributions
Hm only (e.g. [22,26]) reveal a second order transition
with Ising critical behavior. Investigations of the ferro-
magnetic fcc Blume-Capel model (3) show that first order
transitions occur for j̃/(12J) < −0.47 [27,28]. In our sim-
ulations, however, only nonnegative values of j have been
used. It has to be pointed out, that our model is not a
compressible Ising model in the classical sense [29], since
in our model the magnetovolume coupling is achieved by
introducing a third, nonmagnetic spin state with different
elastic properties. Therefore, our results are not in contra-
diction with the extensive investigation of the compress-
ible Ising model by Bergman and Halperin [30] who gen-
erally found second order phase transitions. The change
of the phase transition from second order to first order
due to the inclusion of a particular kind of volume de-
pendent interactions is a well-known effect and occurs in
many microscopic models (see e.g. the discussion of the
periodic Anderson model coupled to static lattice distor-
tions [31,32], or the discussion of the magnetic volume
collapse in itinerant systems [10]). Transformations of the
phonon coordinates lead to a strongly interacting elec-
tron or spin system with volume instabilities of first or
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Fig. 5. Thermal expansion coefficient α as a function of tem-
perature in a monatomic system. Same parameters as in Fig-
ure 2. The solid line denotes the experimental data for α for
disordered Fe72Pt28 (taken from [24]).

second order depending on the parameters. Here it can
be understood by a simplified discussion of the free en-
ergy. Since the ground state is ferromagnetic and with-
out elastic distortions, we will have an absolute minimum
for the pure HM state at low temperatures. For a suit-
able choice of j, an undistorted, LM dominated regime
at a lower volume, determined by the LM Lennard-Jones
pair potentials, will establish a second minimum. This LM
regime may contain some HM sites without showing up
elastic distortions, because HM pair potentials only ap-
ply if both sites are HM. These minima are separated by
a large energy barrier, since the intermixing of HM and
LM pair potentials, which is inevitable for heterogeneous
regimes, is suppressed by Hv. With increasing tempera-
ture, entropy will drag the LM minimum below the HM
minimum without compensating the energy barrier in be-
tween, thus leading to a first order HM-LM transition. At
higher temperatures, the influence of Hv diminishes since
the lattice becomes distorted anyway, due to lattice vibra-
tions. Or, to put it the other way round, the switching of
the magnetic moment does not contribute significantly to
the lattice strain anymore. On the other hand, if a suffi-
ciently high j suppresses the LM state, thermal excitation
of single LM sites is the dominating process, leading to a
smooth decline of the mean magnetic moment towards its
high temperature limit. The HM-LM transition has dis-
appeared. In this case, lattice vibrations do not have any
serious effect on the breakdown of the magnetic order. The
phase transition will presumably exhibit Ising universal-
ity, as found in annealed diluted Ising systems [22,26].
Indeed, for j = 1.38 mRy and j = 0.92 mRy scaling plots
of magnetization, susceptibility and specific heat for linear
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Fig. 6. Adiabatic bulk modulus BS as a function of tempera-
ture in a monatomic system. Same parameters as in Figure 2.
Experimental values for BS are depicted by a solid line (after
[25]).

system sizes L = 4 . . . 12 seem to be consistent with the
assumption of Ising criticality. We achieved the best data
collapses with the following values (α, β, γ denote the ex-
ponents of specific heat, magnetization and susceptibility,
respectively. The critical temperature TC and the expo-
nent ν of the correlation length were determined from the
Binder cumulant [33]): For j = 1.38 mRy: TC = 321.7 K,
1/ν = 1.6 ± 0.1, α/ν = 0.18 ± 0.03, β/ν = 0.51 ± 0.03,
γ/ν = 1.98 ± 0.04. For j = 0.92 mRy: TC = 299.1 K,
1/ν = 1.6 ± 0.1, α/ν = 0.19 ± 0.03, β/ν = 0.50 ± 0.03,
γ/ν = 2.00 ± 0.04. For j = 0.46 mRy we were not able
to produce a data collapse with Ising-like exponents. The
systems are much too small to provide a reliable estima-
tion, but this gives us a hint, that the first-order transition
may vanish between j = 0.46 mRy and j = 0.92 mRy.

A striking feature of the first order transitions is the
large thermal hysteresis which suggests that the system
faces problems in reaching the thermodynamic equilib-
rium in time. This effect can be traced back to the large en-
ergy barrier between the ferromagnetic HM state at high
volume and the paramagnetic mixed LM state at low vol-
ume. Such a barrier is hard to overcome for the global
MC step used for the volume adaption, especially when
fluctuations diminish with decreasing temperature. Since
this energy barrier will vary with the number of atoms
to be moved, the width of the hysteresis loop varies with
system size and the number of lattice sweeps. In the ex-
treme, the system does not find back to its ground state
upon cooling down. First order transitions with thermal
hysteresis, comparable to the ones described in this work
can be found in manganese compounds like YMn2 [34,35]:
This compound shows an discontinuous shrinking of the
lattice parameter around T = 100 K, which is connected
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lattice constant for different compositions of Fe1−xNix.

with an abrupt loss of the magnetic moment. However, one
has to keep in mind that YMn2 occurs in the cubic Laves
phase with an antiferromagnetic order of the manganese
atoms, which is not the situation in our simulations.

The continuous transitions which we investigated are
in some aspects (thermal expansion coefficient, adiabatic
bulk modulus) in qualitative accordance with experimen-
tal data for Fe72Pt28. This supposes that a simple statis-
tical model as the one described here might be a useful
tool for studying HM-LM transitions in Invar materials.
On the other hand magnetovolume effects smeared out
as in Fe65Ni35 and a flattening of the specific heat cp are
not reproduced. Instead we expect Ising universality which
is connected with a sharp divergence of the specific heat
at TC. This shows that some refinement of the model is
necessary in order to obtain an adequate description of
magnetovolume effects in Invar alloys.

5 Simulations of alloys with chemical disorder

One way to improve the model is the introduction of differ-
ent types of atoms with different magnetic behavior placed
in quenched random disorder on the lattice. In this case
the energy associated with the ferromagnetic alignment
of the spins depends on the types of surrounding atoms.
Since this energy has to be overcome in order to flip a
spin into the LM state, chemical disorder will smear out
magnetovolume effects over a large range of temperatures
below TC.

5.1 Details of the calculations

As a reference alloy we chose Fe-Ni, since the binding sur-
faces for various compositions are known from KKR-CPA
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Fig. 8. Magnetization as a function of the temperature for
different compositions of Fe1−xNix.

calculations [6]. These show for the Invar concentration
Fe65Ni35 two distinct, nearly degenerate minima of the
energy in the volume-magnetization plane. Besides that,
previous papers show [36,37] that the Ni-rich part of the
magnetic phase diagram can be approximated by an Ising
model with three different exchange constants JFeFe, JFeNi

and JNiNi. These calculations, however, did not take into
account the existence of the LM state of the iron atoms
and neglected vibrational degrees of freedom. In both
papers antiferromagnetic couplings between iron atoms
(JFeFe < 0) were chosen in order to achieve a better fit
to experimental data, while the other exchange constants
remained positive. This causes some iron moments to be
aligned antiparallel in the mainly ferromagnetic ground
state which leads to a deviation of the spontaneous mag-
netization from the Slater-Pauling curve at large iron con-
tents. A further motivation for the selection of antifer-
romagnetic Fe-Fe exchange couplings is given by ab ini-
tio calculations of γ-iron by Sabiryanov et al. [16]. These
show that the exchange coupling of an effective Heisen-
berg model depends sensitively on the distance between
nearest neighbors: It is large and positive for distances
above dNN > 2.595 Å and vanishes below dNN < 2.52 Å.
In between the exchange constant takes on large negative
values. For the same reason, the choice of JFeFe < 0 is
not in contradiction to our previous calculations, which
describes properties of Fe72Pt28 by taking only ferromag-
netic interactions into account: Fe-Pt alloys are known to
have a larger lattice constant than Fe-Ni alloys.

In our simulations we took JNiNi = 0.40 mRy,
which reproduces TC of pure nickel, JFeNi = 0.96 mRy
and JFeFe = −0.72 mRy. JFeFe is chosen about twice as
large in its absolute value compared to [36,37], so that
a reasonable transition temperature for Fe65Ni35 is re-
produced. This leads, however, to deviations in TC on
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various compositions of Fe1−xNix in comparison with experi-
mental data (taken from [39]). Ms, Mf , As and, Af denote the
start and final temperatures of the martensitic and austenitic
phase transition.

the Ni-rich part of the phase diagram. Since pure nickel
does not exhibit a negative anomaly in the thermal expan-
sion coefficient we disallowed the LM state for all nickel
atoms by choosing jNi � kBT . By disadvantaging the
magnetic state of the iron atoms (jFe = −1.10 mRy) we
achieved that two nearly degenerate minima of the in-
ternal energy as a function of the atomic volume show
up as postulated by KKR-CPA calculations [6]. From the
same source we took the HM and LM equilibrium neigh-
bor distances dH = 2.209 Å and dL = 2.165 Å. Finally,
with εH = εL = 25.47 mRy, we obtained a reasonable bulk
modulus for Fe-Ni alloys. The statistical weight of the non-
magnetic state has been set to g = 0.5 in order to restrict
the fraction of nonmagnetic sites at infinite temperature
to 20%. This is the same value as in a spin-2 model and
in accordance with considerations of Holden et al. [38],
which predict that in Fe65Ni35 above TC a fraction of 15%
to 35% of the iron atoms is in the LM state.

Our calculations were performed on a 123 × 4 = 6912
site fcc lattice, which is still too small to rule out effects
of the specific lattice configurations used. So runs with
larger system sizes and averaging over ensembles of lat-
tice configurations would be desirable but were not pos-
sible up to now due to our time consuming simulation
method. The observed magnetoelastic effects, however,
can be expected to be reliable, because they occur, as we
will point out later, far below the magnetic phase tran-
sition, whereby at TC considerable size and configuration
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dependent effects have to be assumed. Indeed, calculations
with much smaller systems (500 Atoms) revealed some re-
stricted quantitative deviations in the absolute values of
our observables, but no qualitatively different behavior at
all throughout the whole temperature and concentration
range covered. Additionally, we repeated our calculations
for 35 at-% Ni in the vicinity of the phase transition with
6912 Atoms and same parameters but a different lattice
configuration. We found that the results for 〈|M |〉,

〈∣∣S2
∣∣〉,

ω and the internal energy are nearly indistinguishable,
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Fig. 12. Calculated (left) and experimental (right) thermal expansion coefficient as a function of the temperature for different
compositions of Fe1−xNix and a nonmagnetic reference system. Experimental data were taken from [42].

the deviations lie clearly within the size of the symbols.
This shows that the main properties of the model are
well described by the specific lattice configuration used.
We examined compositions containing 30 . . . 60 at-% Ni.
At lower nickel concentrations, Fe-Ni alloys undergo a
martensitic transformation to a bcc phase that does not
show the magnetovolume effects we are interested in. Ad-
ditionally we computed specific heat and elastic properties
of a nonmagnetic reference sample which is characterized
by nearest neighbor Lennard-Jones potentials (2) and the
constants dH, εH.

5.2 Results

We approximated the ground state energy per atom as a
function of the volume by exponentially cooling down the
sample to T = 4 K (Fig. 7). As mentioned above, we find
for the Invar concentration (35 at-% Ni) two nearly de-
generate minima establishing the negative anharmonicity
which is responsible for the Invar effect. With increasing
nickel content, the LM minimum becomes energetically
less favorable and seems to vanish at about 60 at-% Ni.
Vice versa, for larger iron concentrations the HM mini-
mum becomes disadvantageous. These observations are in
qualitative accordance with the ab initio calculations [6],
although the energy differences between the minima are
smaller in our calculations.

Figure 8 shows the magnetization of the alloy as a func-
tion of the temperature. As expected, TC increases with
increasing nickel content on the iron rich side as well as the
reduction of the spontaneous magnetization vanishes due
to the antiparallel alignment of the iron atoms. However,
the calculated Curie temperatures are too small on the
nickel rich side and the deviations from the Slater Paul-
ing curve are too large in comparison with experimental

data (Fig. 9). As mentioned above, these results are due to
an overestimated exchange constant JFeFe for the Ni-rich
side. A better fit to the phase diagram could be achieved
by choosing JFeFe for each concentration separately. But
this is, as we will see, not necessary for a qualitatively
correct reproduction of the anomalies of Fe-Ni Invar.

Increasing the iron content results in a steeper decrease
of the concentration of HM atoms (Fig. 10), resembling
the effect of reducing the anisotropy j in our calculations
for the pure system (Fig. 3). In contrast to Figure 3 the
largest change in

〈
S2
〉

takes place at temperatures be-
low the magnetic phase transition. At the magnetic phase
transition the fraction of HM atoms has almost reached
its high temperature limit which implies that at the In-
var concentrations around TC almost no magnetovolume
effects should be observed. This expectation is confirmed
by Figure 11 and Figure 12 which show plots of the rel-
ative volume change ω and thermal expansion coefficient
α as a function of temperature. Accordingly the main im-
pact on ω is observed at temperatures far below TC. For
35 at-% Ni, thermal expansion nearly vanishes at about
200 K (TC ≈ 540 K). In real Fe65Ni35 (TC = 503 K)
the corresponding minimum in the thermal expansion is
observed at room temperature. Both, calculated and ex-
perimental curves seem to be smooth around TC. On the
nickel rich side, our calculations indicate a slight dip in
α at the magnetic phase transition which corresponds to
a similar anomaly in the experimental data. The change
of the shape of the curves with increasing nickel content
can be easily explained in the framework of our model:
The diminishing number of antiferromagnetic Fe-Fe ex-
change couplings discourages excitations of spins into the
LM state, since the ferromagnetic order is stabilized. So
HM-LM flips will more likely occur around TC where this
order is about to vanish.
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Fig. 13. Left: Calculated bulk modulus as a function of the temperature for different compositions of Fe1−xNix and a non-
magnetic reference system. Right: Experimental Bulk moduli of Fe65Ni35 [40] and Fe59Ni41. The latter was determined from
ultrasonic measurements of elastic constants [41,2] via Eq. (15).

Again the low temperature behavior is not reproduced
correctly due to the employment of a classical model. A
further drawback is that our simulations do not yield anti-
Invar behavior for 30 at-% Ni. In contrast to experimental
observations we find even a contraction of the material.

Increasing the iron content also leads to an enhanced
weakening of the material around T ≈ 200 K, as can be
seen from the adiabatic bulk modulus BS (Fig. 13). Since
BS is derived from the fluctuations of the mean volume per
atom (13-14) which is closely related to the concentration
of HM atoms, we find the maximum effect at temperatures
where

〈
S2
〉

has its maximum slope. Although the magni-
tude of the anomaly is exaggerated by our calculations,
calculated and measured bulk moduli for Fe65Ni35 show a
rather similar behavior: A steep decrease at low tempera-
tures, a broad minimum coinciding with the anomaly in α
and a smooth increase around TC. On the other hand, the
zigzag like anomaly in BS around TC in the experimen-
tal curve for Fe59Ni41 resembles our calculated curves for
higher nickel content. Figure 13 also suggests that between
40 and 50 at-% Ni BS may be nearly constant around room
temperature. This is a hint that our model alloy may also
show Elinvar behavior which is experimentally observed
at about 45 at-% Ni.

Our plots of the specific heat cp (Fig. 14) exhibit, that
with increasing iron content the sharply peaked anomaly
at TC evolves to a broadened and flattened cusp which
agrees with experimental results for the specific heat of Fe-
Ni alloys [43]. Indeed a change in the critical behavior with
increasing iron concentration must be expected, since the
phase transition in a fcc Ising antiferromagnet is of first
order (e.g. [44,45]). Above TC, we find a large enhance-
ment of cp in comparison with the nonmagnetic reference
curve, which is also experimentally observed. When com-

paring the calculated values of cp with experimental data,
one has to bear in mind that our model Hamiltonian (5)
is missing a kinetic part which has a contribution of about
3/2R = 12.5 J mol−1 K−1. Around T = 200K the systems
with larger iron content show an additional maximum.
This can be interpreted as a Schottky anomaly due to the
enhanced number of thermal excitations to the LM state.
The experimental curves for Fe50Ni50 and Fe60Ni40 also
show a second anomaly below TC. In contrast to our cal-
culations, this anomaly shows up at relatively high nickel
concentrations and disappears at lower nickel concentra-
tions, where HM-LM excitations are easier. Recent mea-
surements of cp [42] do not show this behavior and seem
therefore to be in better agreement with our calculations.

Since the concentration of LM atoms is only 12%
around TC, the disappearance of the specific heat peak
is rather caused by the increased number of antiferromag-
netic exchange couplings. The smearing out of cp does
not contradict the Harris criterion [46], which states that
disorder is relevant in three dimensions if the critical expo-
nent of the specific heat α is positive, irrelevant if negative,
because in case of disorder we have

u |t|−Φu ∝ |t|−α/2 (16)

with t =
|T − TC|

TC
, Φu ≈ 1, (17)

and u =
1

ξ3 〈J〉

√∫
ξ3

d3r
〈

(J(r)− 〈J〉)2
〉
∝ ξ−3/2,

(18)

where Φu is the crossover exponent, J(r) is the interaction
at r and ξ the correlation length; the brackets stand for
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Fig. 14. Left: Calculated specific heat cp as a function of the temperature for different compositions of Fe1−xNix and a
nonmagnetic reference system. Right: Specific heat as given by experiment [43]. The dashed lines are guide to the eye.

the averaging with respect to the impurity distribution
function. In addition hyperscaling, 3ν = 2 − α, has been
used. However, this only holds if all J(r) have the same
sign. Our model corresponds to strongly disordered sys-
tems in the sense, that similar to a spin glass we have ferro-
and antiferromagnetic interactions. In addition the cou-
pling to the volume lead to a distribution of HM and LM
domains which sizes are temperature dependent. For the
concentrations investigated, the authors do not exclude,
that, due to the dominance of remaining ferromagnetic
interactions, there is still a narrow region of temperature,
in which the infinite system exhibits a sharp divergence of
cp. However, if this critical region is small enough, simu-
lations on finite systems and presumably experiments as
well will show a broad smearing out of the specific heat
peak (as is the case for all Invar alloys).

5.3 Simulations at finite pressure

It is known from Mössbauer measurements of the pressure
dependence of the hyperfine field, that magnetism in Fe-
Ni alloys around the Invar concentration breaks down if
the external pressure is high enough [47,48]. The authors
found, that in Fe68.5Ni31.5 with increasing pressure Curie
temperature and average hyperfine field diminish. At a
critical pressure pc = 5.8 GPa they observe a discontin-
uous drop in both quantities to a value near zero. Since
our simulation method allows calculations for any given
pressure, we examined the magnetization of Fe65Ni35 as
a function of the external pressure for two temperatures

T = 50 K and T = 300 K. In Figure 15 the calculated
magnetizations are shown in comparison with experimen-
tal values of the average hyperfine field at T = 4.2 K in
Fe65Ni35 and Fe68.5Ni31.5 [47]. In any case both, calcu-
lated magnetization and hyperfine field, decrease with in-
creasing pressure. At low temperatures the pressure de-
pendence of the calculated magnetization is in fairly good
agreement with the Mössbauer data for Fe65Ni35, but ex-
perimental values for pressures above 10 GPa would be de-
sirable to confirm this correspondence. On the other hand
a sharp drop of the magnetic moment like the one observed
in Fe68.5Ni31.5 is not reproduced by our calculations. At
T = 300 K we find a phase transition at a critical pres-
sure pc ≈ 18 GPa. This is about three times higher than
we would expect for the real alloy [47]. At T = 50 K no
such peak occurs. The magnetization approaches a steady
value of 0.21µB which corresponds to all iron atoms being
in the LM state and all nickel atoms aligned in ferromag-
netic order. The magnetic long range order stays intact.
This means that at low temperatures no magnetic phase
transition will be caused by increasing pressure since the
nickel concentration is above the percolation threshold.
As long as we deny a considerable volume dependence
of the nickel moment, this result is a consequence of our
premise that the nickel atoms are characterized by local
moments which do not depend on the electronic properties
of the surrounding iron atoms. However, this assumption
may not hold: Ab initio electronic structure calculations
of Fe3Ni [4] show that iron and nickel moments diminish
simultaneously at low volume.
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6 Conclusion

Our simulations show that some of the most important
thermodynamical properties of Invar alloys, as there is
reduced thermal expansion, weakening of the elastic con-
stants or broadening of the anomaly in the specific heat
at TC, can be accounted for by the HM-LM picture. This
is remarkable since neither are Lennard-Jones potentials
able to describe the elastic behavior of metals correctly nor
are localized Ising spins believed to give an adequate repre-
sentation of the magnetic properties of Invar alloys. Both
were used because they are easy to compute and provide
a tractable way to examine the thermodynamics of a sys-
tem with HM-LM characteristics. The investigation of a
homogeneous system consisting of atoms of only one type
showed, that starting from a ferromagnetic HM ground
state a first order HM-LM transition connected with a dis-
continuous contraction of the lattice constant might occur
at low temperatures. Disfavoring the LM state by alter-
ing the energetics of our model shifts the magnetovolume
effects to higher temperatures. But the first order transi-
tion disappears due to the influence of lattice vibrations
which level out the energy barrier discouraging an inter-
mixing of HM and LM bonds. In this case, the number of
thermally excited LM sites increases gradually, leading to
continuous magnetovolume effects.

The inclusion of chemical disorder as well as the use of
antiferromagnetic exchange couplings between iron atoms
for the description of Fe-Ni alloys play an important role
for the qualitative accordance we achieved: Previous calcu-
lations with chemical disorder and a positive JFeFe [49] also
revealed smeared out magnetovolume effects. But around

TC considerable effects in α and BS and a sharply peaked
specific heat were encountered, resembling those obtained
for the monatomic calculations (Figs. 5,6). So the smeared
out minimum of the thermal expansion seems indeed to
be caused by disorder, whereas the absence of consider-
able magnetovolume effects around TC and the flattening
of the anomaly in cp are presumably due to the antifer-
romagnetic exchange coupling between iron atoms. Fur-
thermore the variation of the number of antiferromagnetic
Fe-Fe couplings at different compositions accounts for the
change in the shape of the temperature dependence of α,
BS and cp, which is close to the experimentally observed
behavior. Although not all aspects of disordered systems
can be discussed properly for small system sizes (L ≤ 12),
our simulations yield quantitatively reproducible results
for the larger systems. Note also, that this is the first suc-
cessful simulation of the smearing out of cp, which is not
an order of magnitude different from experimental results.

Future investigations should make use of distance
dependent exchange constants, especially between iron
atoms. As mentioned earlier, band structure calculations
by Sabiryanov et al. [16] predict that the exchange cou-
pling in fcc Fe depends sensitively on the distance be-
tween nearest neighbors which even includes a change of
its sign from antiferromagnetic to ferromagnetic behavior.
Recently, efforts have been made by Grossmann et al. [17]
to explain magnetoelastic features of Invar materials by
simulating a compressible Ising model. Their results show
some analogy to our monatomic calculations. So a com-
bined approach may yield further improvement, although
one will face the problem of fixing even more parameters.
We did not attempt this so far, since we wanted to sin-
gle out the influence of lattice vibrations and competing
exchange interactions first. Further improvements might
be made by taking care of the strain induced by different
equilibrium neighbor distances for iron and nickel atoms,
which we neglected for the sake of simplicity. Since iron
and nickel atoms are randomly placed on the lattice, this
could alter the energy balance for a HM-LM flip in a sim-
ilar way as the introduction of atom dependent exchange
constants.

Finally we should compare our results to theoreti-
cal work based on continuous Ginzburg-Landau like spin
models, as cited in the introduction. The advantage of
such models is that here parameters can be well fitted to
ab initio results for the magnetic binding surfaces and that
the evolution of stable and metastable magnetic states
with temperature can easily be calculated. The disadvan-
tage, however, is that fluctuation effects appear in an ex-
aggerated way at high temperatures which can only be
handled very approximately by using temperature depen-
dent cut-off parameters for the number of classical fluc-
tuation modes. Also critical behavior cannot be described
correctly within this type of fluctuation theory. The draw-
backs of our present model (at low temperatures) have
been discussed in the text; the advantage of our approach,
however, is its simplicity. The consequences of the approx-
imations we made (Ising magnetism, Lennard-Jones pair
potentials) are well known, new effects can be studied by
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gradually introducing new interactions or changing the in-
terplay between existing ones by altering the parameters.
This may help to understand the complex relationship of
the many possible causes constituting the variety of Invar
anomalies.
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of the work was done on their INTEL-Paragon parallel com-
puter.

References

1. C.E. Guillaume, C.R. Acad. Sci. 125, 235 (1897).
2. E.F. Wassermann, in Ferromagnetic Materials, Vol. 5,

edited by K.H.J. Buschow, E.P. Wohlfarth, (Amsterdam:
Elsevier, 1990), p. 237.

3. M. Shiga, in Materials Science and Technology, Vol. 3B,
edited by R.W. Cahn, P. Haasen, E.J. Kramer (Weinheim:
VCH, 1994), p. 159.

4. P. Entel, E. Hoffmann, P. Mohn, K. Schwarz, V.L.
Moruzzi, Phys. Rev. B 47, 8706 (1993).

5. E. Hoffmann, P. Entel, K. Schwarz, P. Mohn, J. Magn.
Magn. Mater. 140-144, 237 (1995).
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